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Abstract The concept of the residence time of an atom in
a kink position was introduced to predict the structure
of electrochemically deposited surface coatings. The
residence time is obtained from the reciprocal value of
the rate constant for separation from the kink position.
Residence times and deposition rates determine the
density of kink positions [ksp] on the growing metal film.
For equilibrium conditions (Nernst potential), the den-
sity of kink positions [ksp]0 depends on the exchange
current density i0 and on the residence time s by the
equation:

ksp½ �0¼
i0sNL

zF
;

where NL is Loschmidt’s or Avogadro’s number, F is
Faraday’s constant and z is the charge of the metal ions
in the electrolyte. Calculated values of residence times
are presented for pure metals as well as for silver–lead
and nickel–aluminium alloys.

Keywords Kink positions Æ Nickel–aluminium alloy Æ
Residence times Æ Silver–lead alloy Æ Surface coatings

Introduction

Electrochemical deposition of a thin metal, alloy or
compound film is one of the oldest coating technologies.
Electrochemical deposition offers unsurpassed advanta-
ges such as compactness or pore-free deposits, despite
great advances made in plasma or vapour deposition
technologies. With increasing demands for advanced

coatings, the development of deposits with improved
properties must be pursued. However, modifications
must first be made as properties depend on the structure
of the deposit and the structure depends on the deposi-
tion parameters, so that a better understanding of the
influence of structure and of the structure forming pro-
cesses on properties is necessary.

In the past, emphasis was put on depositing homo-
geneous metal or alloy phases, but, in recent years, new
materials were developed by the formation of interme-
tallic compounds. Examples are superalloys with new
high-temperature properties [1] or smart alloys showing
the shape memory effect [2]. Even in the field of the
classical corrosion protective zinc coating, the develop-
ment of new alloys has definitely enhanced the perfor-
mance. ZnNi alloys are one example. Up until now, the
assumption was that the formation of an intermetallic
phase, Zn21Ni5 (Zn with 14% Ni, c-phase), was the
reason for the corrosion protection of this composition
[3], but recent experiments at lower Ni concentrations
(deposition from alkaline electrolyte, 7–8% Ni) show
that the d-phase (Zn8Ni) is formed. This phase segre-
gates into pure Zn and the c-phase after thermal treat-
ment at 190 �C for 23 h [4]. The deposits from alkaline
electrolytes show improved corrosion protection com-
pared with the Zn21Ni5 deposits from acidic electrolytes.

Another example is zinc–manganese, where the for-
mation of the d1-phase was observed at 10.7 wt% Mn
[5]. In experiments on depositing alloys with a higher
concentration of 20 wt% Mn, the X-ray diffraction
pattern of the �-phase was established [6]. It is also
possible to deposit pure zinc with differing topographies
(Fig. 1; Beyerhaus D, Plieth W, unpublished results),
thus influencing the properties of this metal.

Structure determining factors

It is well known that the structure of an alloy is deter-
mined by the properties of its components. Hume-
Rothery et al. [7] formulated rules for the formation of
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solid solutions by comparing atomic diameters and
electronegativities whereby both should not differ by
more than 15%. The plotting of atomic radii and elec-
tronegativities versus group numbers shows that the
position in the Periodic Table is a third important factor.

On inspecting the structure of copper–zinc alloys
(brass), Hume-Rothery et al. [7, 8] observed that, at
special values of the ratio of the number of valence
electrons to the number of atoms in the Wigner–Seitz
cell, transformations between different alloy phases oc-
curred. Copper was crystallizing in the fcc lattice
(Pearson symbol cF4). At a copper/zinc ratio of 1:1
(CuZn) and a valence electron/atom number ratio of 3:2
(21:14), the b-phase (W-type, Pearson symbol cI2) was
formed. With a further increase of the zinc concentra-
tion at Cu5Zn8 (valence electron/atom number ratio of
21:13), the c-phase (Cu5Zn8-type, Pearson symbol cI52)
was observed. At CuZn3 (valence electron/atom number
ratio of 7:4 or 21:12), the e-phase (Mg-type, hcp lattice,
Pearson symbol hP2) was found.

Our modern knowledge and insight into the nature of
the chemical bond tells us that electronegativity and
valence electron concentration are aspects of the elec-
trostatic and chemical interaction of the components, in
principle enabling reduction of the factors responsible
for the structure of a solid phase to three properties:

1. Size.
2. Coulomb forces by charge separation (ionic bonds).
3. Bond forces by localized or extended orbitals (cova-

lent bonding or metallic bonding).

This, however, depends on the chemical nature of the
components represented by the position in the Periodic
Table. Therefore, in combination with the atomic
number factor [9], these three factors lead to a successful
classification and grouping of the elements. The results
are structure tables, e.g. by Pettifor [10].

Bond energies

The various bonds in a solid (ionic, covalent, metallic)
all contribute to the strength of the bond and to the
solid-state properties; the bond strength is represented
by the bond energy, which is one of the important
parameters in characterizing a material. Even now, the
determination of bond energies, especially for alloys, is
not exactly a trivial task.

Bond energies of pure metals

In the case of the solid state of a pure metal, the bond
energy can be calculated from the sublimation enthalpy
DSH. This, the energy of an atom in the kink position,
can be derived (Volmer [11] as discussed by Honigmann
[12]; see also Budevski et al. [13], p 19):

/1=2 �
DSH
NL
þ 1

2
kT ð1Þ

where NL is the Loschmidt or Avogadro number. In the
second term, k is the Boltzmann constant and T is the
temperature; the second term is usually neglected
(<1%). Volmer’s approach is valid for evaporation of
single atoms.

The value of /1/2 is the characteristic value for the
molecular interaction, and takes into account the inter-
actions between first, second and further neighbours.
For simple lattice models and pure metals it is exactly
one half of the lattice energy of an atom. On application
of an appropriate lattice model, it is possible to calculate
the energy between two atoms. For example, in a close-
packed hexagonal or cubic lattice with six close neigh-
bours in the kink position, the results are approximately
as follows:

/Me�Me �
/1=2

6
ð2Þ

The second and third neighbours are not taken into
consideration in this approach.

Bond energies of alloys

The situation for alloys is more complex, depending on
the composition A1)xBx and on the structure. To
achieve approximate access to the interaction energy
between atoms A and B, two procedures were suggested
[14]. The first was based on the evaluation of the
underpotential deposition (upd) potential of the

Fig. 1 X-ray diffraction peaks of Zn layers deposited from a
commercial alkaline electrolyte with polyamine and other additives
using different current densities: (a) 5 mA/cm2; (b) 50 mA/cm2

(Beyerhaus D, Plieth W, unpublished results)
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compact and fully discharged upd layer of the metal B
on the substrate A. It was presumed that under these
conditions the enthalpy difference for the formation
reaction Mebulk fi Meupd could be calculated.

The free energy (Gibbs energy) of formation of the
upd modification of a metal is the following:

DfGupd � �
DEupd

zF
ð3Þ

where DEupd is the potential difference between the
appropriate upd peak and the Nernst potential; z is the
charge of the upd metal ions in solution, F the Faraday
constant.

It was assumed that, for a compact and fully dis-
charged upd layer, one could neglect the entropic term in
DfGupd [14]. This assumption was based on the similar
volume of vibration for an atom in the bulk and in the
compact and fully discharged upd layer, as will be dis-
cussed in greater detail in a forthcoming publication
[15]. Therefore it is possible to write the following:

DfGupd � DfHupd ð4Þ

Then one can calculate the sublimation enthalpy of the
metal in its upd modification:

DSHupd ¼ DSHbulk � DfHupd ð5Þ

and hence the energy of an atom of the upd layer in a
kink position of the upd layer, /1/2,upd, by use of Eq. 1.
From this value, the bond energy between atom A and
atom B can be approximately derived using a crystal-
lographic model of the upd layer on its substrate. An
example of this process is the system Pb on Ag [16, 17].

In [14], a second possibility to derive approximate
values of the bond energies between atoms A and B in an
alloy is discussed. Using the potential dependence of the
alloy composition in the region between the equilibrium
potentials of A and B, but more positive than the
equilibrium potential of B, the potential of commencing
alloy formation Ef (Fig. 2) can be extrapolated. This
potential is the analogue to the upd potential of B on A,

in a similar way determined by the binding forces
between A and B. It should be pointed out that the
potential Ef is a potential near to the equilibrium po-
tential and not at all far from the standard state of the
metal, assuming that no kinetic effects determine the
commencing alloy formation.

The sublimation energy of the less noble alloy com-
ponent B at zero concentration is obtained by a proce-
dure similar to that described for upd layers. With the
sublimation energy, the energy of B in a kink position of
the alloy A1)xBx for x fi 0 can be calculated with an
equation similar to Eq. 1, which is the energy of an atom
B in a pure matrix of atoms A. For the deposition of
AlNi alloys, Moffat [18] recently measured several val-
ues. Bond energy values calculated by the procedures
described for the examples mentioned are given in
Table 2.

Theoretical calculation of bond energies

In the literature, attempts have been made to calculate
bond energies theoretically, but a general solution to the
problem is actually difficult. The problem lies in taking
into account the differing contributions from Coulomb
interactions, localized orbitals (covalent forces) and the
contribution of delocalized orbitals (metal bonds). For
an alloy AB, Miedema and co-workers [19] presented an
empirical calculation of the formation DHAB.

The concept of residence times in kink positions

Kink positions and rate equation of separation
for a pure metal

In order to develop a mechanism leading from energy
values to a prediction of the structure, the concept of the
residence time of an atom in a kink position was intro-
duced [20]; the kink position is the intermediate position
of an atom in the crystallization process ([13], pp 16ff).
Residence time (German word ‘‘Verweilzeiten’’; in [20]
the expression ‘‘dwell time’’ was used as it is more sim-
ilar to the German expression ‘‘Verweilzeit’’, but the
name ‘‘residence time’’ was recommended by one of the
referees) is rarely used in electrochemistry. It describes
the statistical time segment an atom stays in a kink
position before separating again.

In the process of deposition, a metal ion on its way to
discharging goes through three main intermediate states:
the ad-atom position, the step position and the kink
position [12, 13]. For each intermediate state the for-
mation and separation reaction can be formulated. For
each intermediate state, a residence time can be defined.
In the following, exclusively the kink position will be
discussed.

In Fig. 3 the kink position on a (100) face of a cubic
primitive (cP) lattice is shown. Three various reaction
paths exist for depositing and separating of a metal ion/

Fig. 2 Dependence of the alloy composition on the potential
(schematic representation); extrapolation to the potential at the
start of alloy formation, Ef; DE=Ef)E0 (E0 is the equilibrium
potential of the less noble component B) can be employed for bond
energy calculations
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metal atom to and from a kink position (the numbers
differ from those in [20]: reaction path 3 in [20] is now
reaction path 1 here, and vice versa):

1. Depositing from and separating to a step position.
Figure 3 depicts a step running in the [100] direction.

2. Depositing from and separating to an ad-atom posi-
tion.

3. Depositing from and separating into the ambient
phase (gas phase or electrolyte; in the present paper
the electrolytic phase is considered exclusively).

The three reactions for deposition and separation are
parallel reactions. This is in contrast to the reactions in
the mechanism of the deposition or dissolution process
where these reactions are consecutive reactions.

For the definition of the residence time in the kink
position, one only needs the separation reactions. The
rate equation for the separation process is:

rsep ¼ ksep ksp½ � ð6Þ

where [ksp] is the density of the kink positions an the
surface. With three parallel separation reactions, the rate
constant for separation, ksep, consists of three terms:

ksep ¼ ksep;1 þ ksep;2 þ ksep;3 ð7Þ

The various terms for the separation rate constant
differ by the activation energy. Figure 3 depicts the (100)
face of a primitive cubic lattice. In this example, and if
solvation or complexing reactions are neglected, the
activation energy required for separation from the kink
position to a step position is almost equal to the
breaking of one bond (approximately 1/3 of the energy
of the kink position). The transfer to an ad-atom posi-
tion is almost equal to the cleaving energy of two bonds
(approximately 2/3 of the energy of the kink position)
and the transfer to the ambient phase is almost equal to
the cleaving energy of three bonds (approximately to the
bond energy of the atom in the kink position).

With these values for the activation energy, the terms
in the equation for the separation rate constant (Eq. 7)
are given by the equations:

ksep;1 ¼ k0 exp �
/1=2

6kT

� �
ð8Þ

ksep;2 ¼ k0 exp �
/1=2

3kT

� �
ð9Þ

ksep;3 ¼ k0 exp �
/1=2

kT

� �
ð10Þ

The constant k0 is the rate constant for barrier-less
separation (zero activation energy). The magnitude of k0
is obtained from the frequency of dissociation; a typical
value applied in transition state theory is 1012 s)1.

In Fig. 4, the (100) face of a cubic face-centred (cF,
fcc) lattice is shown. A variety of metals can crystallize
in this structure. The transition state of the separation
reactions in the surface plane are marked in Fig. 4 by
open circles. The activation energies consist of two
terms, one taking into account the cleavage of the
bonds, another considering the activation energy of
surface diffusion. The second term will be neglected,
which is justified for electrified metal/electrolyte
interfaces ([13], p 108). The influence of the solvation
on the transition states is also neglected. Then
the activation energy for the separation to a step po-
sition is:

Ea;1 ¼ /Me�Me ¼ /1=2=6 ð11Þ

and the activation energy for the separation to an ad-
atom position is:

Ea;2 ¼ 2/Me�Me ¼ /1=2=3 ð12Þ

Fig. 4a, b Steps and kink positions of the (100) face of a cubic face-
centred (cF, fcc) lattice; schematic representation. Large spheres:
upper plane; small spheres: lower plane; the lines mark the main
step directions on the (100) face. (a) Transition state to a step
position; (b) transition state to an ad-atom position

Fig. 3 Definition of the different reaction paths for separation from
a kink position and deposition into a kink position; for simplicity,
the cubic primitive (cP) lattice and a (100) face are depicted
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In this approach, an approximate value for the activa-
tion energy is used. It should be possible, in principle, to
calculate the activation energy for appropriate models of
the transition state.

With the suggested values for the activation energy,
the terms in the equation for the rate constant of sepa-
ration (Eq. 7) are given by the equations:

ksep;1 ¼ k0 exp �
/1=2

6kT

� �
ð13Þ

ksep;2 ¼ k0 exp �
2/1=2

6kT

� �
ð14Þ

ksep;3 ¼ k0 exp �
/1=2

kT

� �
ð15Þ

Again, the constant k0 is the rate constant for barrier-
less separation (zero activation energy) with an
approximate value of 1012 s)1.

A potential dependence (for electrochemical pro-
cesses) can be introduced by a Butler–Volmer term Pi

(i=1, 2, 3) in Eqs. 8, 9, 10 and 13, 14, 15:

Pi ¼ exp þbiDzie0U
kT

� �
ð16Þ

and consists of a symmetry coefficient, bi, describing the
part of the electrode potential U (strictly speaking, the
potential drop across the interface) influencing the dif-
ferent separation reactions, and the partial charge
transfer, Dzi, connected with the reaction steps 1, 2 and
3, respectively. The influence of the potential on the
separation reactions in the surface plane is small. A
stronger impact of the potential is expected for the direct
separation to the electrolyte.

The energy of activation used in the previously
mentioned equations is a relative value, enabling the
kinetic comparison of the various paths of separation.
With regard to the approximate nature of k0, the present
procedure is acceptable.

Kink positions and rate equations for the separation
of an alloy

In order to transfer this concept to an alloy, it is nec-
essary to define kink positions for alloys. In [20], this
task was discussed for an AB alloy of equal stoichiom-
etry (A:B=1:1) and as well as crystallizing in a NaCl-
type lattice (coordination number 6). Contrary to a pure
metal, different kink positions have to be distinguished.
For example, Fig. 5 depicts the (100) plane of an AB
alloy with a NaCl-type lattice and for equal radii of the
components.

Three nearest neighbours B surround an A atom in a
‘‘regular’’ kink position of this structure (kink site AB).
In the next position, a deposited B atom is surrounded
by three nearest neighbours A, again forming a regular
kink position AB, whereby an A atom may also deposit

in this position, then surrounded by three nearest A
atoms, forming a kink position AA. If an atom B is
deposited, the option for filling the following position is
either an A atom in this position, again forming a reg-
ular kink position AB, or a B atom takes this position
thus forming a kink position BB.

The separation reactions of a kink position AB can
be described as follows:

1. The transfer to a step position, rate constant k1: one
bond AB must be cleaved and the activation energy is
proportional to /AB.

2. The transfer to an ad-atom position, rate constant k2:
two bonds must be broken and the activation energy
is proportional to 2/AB.

3. Complete separation from the solid phase, transfer to
the electrolyte or the gas phase, rate constant k3: all
bonds of the kink position must be cleaved and the
activation energy is proportional to the full energy of
the kink position.

As in the previous section, the general application
approach could also be demonstrated at alloys crystal-
lizing in the hexagonal or cubic close-packed structure.
Kink sites on other planes and for other lattice types are
described in [20].

The process of separation is described by rate equa-
tions similar to that applied for the pure metal (Eqs. 8,
9, 10 and 13, 14, 15) and knowing the bond energies
between neighbouring atoms, /AB, /AA and /BB, the
rate constants ksep,AB, ksep,AA and ksep,BB can be calcu-
lated approximately. The equation for the rate constant
for separation from a kink position AB is given by:

ksep;AB ¼ k0 e�Ea;1;AB=kT þ e�Ea;2;AB=kT þ e�Ea;3;AB=kT
n o

ð17Þ

It consists of three terms, Ea,1, Ea,2 and Ea,3 for step
transfer, ad-atom transfer and complete separation,
respectively. The same equations exist for kink positions
AA and BB. Under electrochemical conditions an
additional factor Pi (Eq. 16) must be added to Eq. 17.

Using the values for /AB, /AA and /BB given in [14]
and [15], approximate rate constants could be calcu-
lated. The results are shown in Table 2. In these calcu-
lations, solvation effects and the electrochemical factor
were neglected.

Fig. 5 Definition of kink positions on the 100 face of an alloy of
composition AB, crystallizing in a NaCl-type lattice
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If the step mobility of the atoms A and B is restricted
(as in the example of the [100] step direction in Fig. 5 for
strong differences between /AB, /AA and /BB), the se-
quence of separation is modified in the sense that sepa-
ration from the step substitutes the separation from the
kink position.

The definition of residence times

The reciprocal value of the rate constant of separation is
a time constant representing the mean time between the
appearance of an atom in a kink position and its re-
separation, thus named ‘‘residence time’’. The name
‘‘dwell time’’ was used in a previous publication ([20]).

The equation for residence time s in a kink position
of a pure metal is:

s ¼ 1

ksep
ð18Þ

It might appear that a definition like the half-life time
(Eq. 18 multiplied by ln2) might be more appropriate,
but for further use of s the above definition is needed.

Examples for the residence times of pure metals with
cubic close-packed structures (cubic face-centred lat-
tices, Pearson symbol cF4), are given in Table 1.

The equations for residence times in the various kink
positions of an AB alloy (as defined in Fig. 5) are:

sAB ¼
1

ksep;AB
ð19Þ

sAA ¼
1

ksep;AA
ð20Þ

sBB ¼
1

ksep;BB
ð21Þ

Table 2 gives examples of the residence times for atoms
in the kink positions AB, AA and BB for AgPb and
AlNi. All components crystallize in the cubic close-
packed structure [cubic face-centred (cF or fcc) lattice].
The intermetallic phase AlNi crystallizes in the CsCl
structure, but is similar to the cubic close-packed
structure.

The residence times are a transparent image of the
stability of a kink position. In comparison to the
deposition rates (next section), they provide the experi-
mental conditions for predicting the formation of a
special structure.

Rate of deposition, density of kink positions
and structure of pure metals

The rate of deposition is measured by the deposi-
tion current, which calculates the number of atoms
discharged per second and per unit of surface area.
By multiplying this value together with the resi-
dence time, the number of atoms arriving during
the residence time per unit of surface area, Ns, is ob-
tained:

Table 3 Density of kink
positions at the Nernst
potential [ksp]0 calculated for
some selected metals using the
residence times of Table 1.
Values of exchange current
densities from [24]

Metal Electrolyte s (s) i0 (A/cm2) [ksp]0 (cm
2)

Ag 0.028 M Ag(CN)3
2); 1 M CN) 5.7·10)5 2.8·10)3 1.0·1012

0.1 M AgClO4; 1 M HClO4 5.7·10)5 4.5 1.6·1015
0.001 M AgClO4; 1 M HClO4 5.7·10)5 1.5·10)1 5.3·1013

Cd 0.02 M CdSO4; 1.6 M K2SO4 1.3·10)9 1.5·10)3 6.1·106
Cu 1.0 M CuSO4; 1 M H2SO4 1.8·10)3 1.0·10)10 5.6·105

0.1 M CuSO4; 1 M H2SO4 1.8·10)3 1.0·10)11 5.6·104
Fe 1.0 M FeSO4; 0.01 M H2SO4 (?) 7.0·10)2 1.0·10)8 2.2·109
Ni 0.5 M NiSO4; pH 2.3 or 4.4 4.4·10)1 1.0·10)6 1.4·1012
Zn 1.0 M ZnSO4; 0.01 M H2SO4 3.8·10)9 2.0·10)5 2.4·105

Table 1 Pure metals of cubic
close-packed structure (cubic
face-centred lattice, Pearson
symbol cF4). Enthalpies of
melting, DFH, vaporization,
DVH, and sublimation, DSH
[23]; energy of atoms in kink
positions, /1/2, rate constants of
separation, ksep, and residence
times, s

Metal DFH(kJ/g-atom) DVH(kJ/g-atom) DSH(kJ/g-atom) /1/2 (eV) /1/2/6 (eV) ksep (s)1) s (s)

Al 10.7 293.7 304.4 3.15 0.526 1.3·103 7.6·10)4

Pb 4.8 179.5 184.3 1.91 0.318 4.2·106 2.4·10)7

Ni 17.8 380.6 398.4 4.13 0.688 2.4 4.2·10)1

Rh 21.8 494.0 515.8 5.35 0.891 8.9·10)4 1.1·103
Pt 21.7 447.0 468.7 4.86 0.810 2.1·10)2 4.7·10
Cu 13.0 304.0 317.0 3.29 0.548 5.6·102 1.8·10)3

Ag 11.3 254.0 265.3 2.75 0.458 1.8·104 5.5·10)5

Au 12.8 324.4 337.2 3.49 0.582 1.5·102 6.9·10)3

Table 2 Bond energies, /Me-Me, rate constants of separation, ksep,
and residence times, s. cF (fcc) lattice; (100) plane. The rate con-
stants ksep are calculated using the approximation ksep=ksep1

Alloy system Bond /Me-Me (eV) ksep (s)1) s (s)

Ag/Pb Ag–Ag 0.458 1.7·104 6.1·10)5

Pb–Pb 0.318 4.0·106 2.5·10)7

Ag–Pb 0.418 7.9·104 1.3·10)5

Al/Ni Al–Al 0.526 1.2·103 8.7·10)4

Ni–Ni 0.688 2.0 4.9·10)1

Al–Ni 0.906 4.0·10)4 2.5·103
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Ns ¼
isNL

zF
ð22Þ

where NL is Loschmidt’s or Avogadro’s number, F is
Faraday’s constant and z the charge of the metal ions in
the electrolyte.

Ns must be compared to the density of the kink
positions, [ksp]. If Ns is much smaller than [ksp], the
number of kink positions will decrease; if Ns is much
larger than [ksp], the number of kink positions will in-
crease. For stationary conditions (t fi ¥), the number of
kink positions should approach the value of Ns:

lim
t!1

Ns ¼ ksp½ �:

This leads to the following equation:

ksp½ � � isNL

zF
ð23Þ

A special state where stationary conditions can be
expected is the electrochemical equilibrium potential
(Nernst potential), when the density of kink positions
[ksp]0 is given by the exchange current density i0 and the
residence time:

ksp½ �0¼
i0sNL

zF
ð24Þ

For example, for an exchange current density of
i0=10 mA/cm2, z=2 and a residence time of s=10)3 s,
the density of kink positions at the Nernst potential is
1013 cm)2. Examples are given in Table 3.

The calculation of [ksp]0 takes into account the nature
of themetal (by s) and the kinetic experimental conditions
by i0, reflecting the different experimental parameters such
as electrolyte composition, additives, etc.

The density of kink positions under deposition con-
ditions [ksp] is a factor determining the structure of the
growing metal phase. At small current densities and
small residence times, the crystal growth occurs at rela-
tively few growths centres, producing the basic repro-
duction type (BR, in the notation of Fischer [21]). In
other circumstances, high current densities and large
residence times induce higher values of [ksp] and pro-
duce an irregular crystallographic structure: the field
oriented texture type (FT), or the disoriented dispersion
type (UD) is formed.

Some time ago, Winand [22] depicted a similar
description in the form of an empirical diagram. In his
diagram, the current density is plotted versus inhibitor
concentration. Portraying a somewhat transparent
explanation on a more quantitative basis, the current
(x-axis) can be substituted by is while the inhibitor
concentration (y-axis) can be substituted by i0s.

Rate of deposition, density of kink positions
and structure of alloys

Comparison of the residence time with the deposition
rate is also possible for the deposition of an alloy. The

deposition of an alloy of two components A and B of
approximately similar size is chosen as an example. By a
suitable selection of the experimental parameters (con-
centration of metal ions, complexing agents, potential,
etc.), the deposition rate of A can be equalized to the
deposition rate of B and be equivalent to equal partial
current densities, iA�iB. Three such cases can be dis-
tinguished:

1. sAB�sAA�sBB.

If a metal atom A or B is deposited in a kink position,
then, independent of the character of the kink position,
it will remain in this position (all kink positions are of
equal stability). If during this time a second atom arrives
(B or A), the position of the atom first deposited in the
crystal lattice is established. The deposition rates are
similar, but an attachment of atoms A or B is possible,
leading to a homogeneous mixture between A and B and
a solid solution.

It is possible to apply the concept of residence times,
deposition rates and corresponding density of kink
positions (as mentioned in the previous section) to this
situation in the manner described. Deposition occurs
with the rate i=iA+iB, and the residence times are
approximately equal: sAB�sAA�sBB=s. That means
that Eq. 23 can be applied in order to calculate the ex-
pected density of kink positions, [ksp].

2. sAB<<sAA�sBB.

If the kink position AB is far less stable than the
position AA or BB and at equal rates of deposition
iA�iB, the formation of pure crystallites of atoms A and
of atoms B is preferred. This situation is typical for the
formation of a eutectic mixture. Under these conditions,
individual kink positions of component A and compo-
nent B on the surface are achieved. The equilibrium
approach is given as follows:

ksp½ �A�
iAsAANL

zF
ð25Þ

ksp½ �B�
iBsBBNL

zF
ð26Þ

3. sAB>>sAA, sBB.

In this state the kink position AB is much more stable
than AA or BB. If kink position AA or kink position BB
is formed, it can be expected that either atom A or B
separate from the kink position before the next attached
atom stabilizes the position. If the kink position AB
alone is formed, the atom in this position will dwell until
the next built-in atom stabilizes its position. Under these
conditions a crystallite AB (an intermetallic stable phase
or intermetallic compound) is formed.

The number of kink positions characteristic of the
stationary situation is given by:

ksp½ �AB�
ðiA þ iBÞsABNL

zF
ð27Þ
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This must be compared with the values of [ksp]A and
[ksp]B (Eqs. 25 and 26). When the deposition rate of one
atom (e.g. A) grows considerably more than the other,
the number of growth centres [ksp]A increases and ma-
trix A develops, embedding the intermetallic phases AB.
At very large deposition rates of A, this continues into a
solid solution of few atoms B in the matrix of A.

Conclusions

The concept of residence times of atoms in kink posi-
tions was introduced in order to understand the elec-
trochemical processes determining the development and
growth of structures. The residence time is the reciprocal
value of the rate of separation from the kink position.
From the examples so far discussed, one obtains the
impression that the residence time s and deposition
current density i (or exchange current density i0 at the
equilibrium potential) provide a measure of the surface
dynamics and of the developing structure.
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